Score Level Fusion of Ear and Face Local 3D Features for Fast and Expression-Invariant Human Recognition

نویسندگان

  • Syed M. S. Islam
  • Mohammed Bennamoun
  • Ajmal S. Mian
  • Rowan Davies
چکیده

Increasing risks of spoof attacks and other common problems of unimodal biometric systems such as intra-class variations, nonuniversality and noisy data necessitate the use of multimodal biometrics. The face and the ear are highly attractive biometric traits for combination because of their physiological structure and location. Besides, both of them can be acquired non-intrusively. However, changes of facial expressions, variations in pose, scale and illumination and the presence of hair and ornaments present some genuine challenges. In this paper, a 3D local feature based approach is proposed to fuse ear and face biometrics at the score level. Experiments with FRGC v.2 and the University of Notre Dame Biometric databases show that the technique achieves an identification rate of 98.71% and a verification rate of 99.68% (at 0.001 FAR) for fusion of the ear with neutral face biometrics. It is also found to be fast and robust to facial expressions achieving 98.1% and 96.83% identification and verification rates respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Multibiometric human recognition using 3D ear and face features

We present automatic extraction of local 3D features (L3DF) from ear and face biometrics and their combination at the feature and score levels for robust identification. To the best of our knowledge, this paper is the first to present feature level fusion of 3D features extracted from ear and frontal face data. Scores from L3DF based matching are also fused with iterative closest point algorith...

متن کامل

PhD Thesis Title: Human Recognition Using Local 3D Ear and Face Features

The field of Biometrics is rapidly gaining popularity due to increasing breaches of traditional security systems and the decreasing costs of sensors. Among the biometric traits, the ear and the face are considered to be the most socially accepted due to their easy and non-intrusive data acquisition. Furthermore, their feature richness and physical proximity make them good candidates for fusion....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009